
1

Reversible
 Concurrent Systems

Ivan Lanese
Focus research group
Computer Science and Engineering Department
University of Bologna/INRIA
Bologna, Italy

Contributors

 Elena Giachino (University of Bologna/INRIA, Italy)
 Michael Lienhardt (University of Turin, Italy)
 Claudio Antares Mezzina (IMT Lucca, Italy)
 Jean-Bernard Stefani (INRIA, France)
 Alan Schmitt (INRIA, France)

Map of the talk

1. Causal-consistent reversibility

2. Controlling reversibility

3. Specifying alternatives

4. Conclusion

4

Causal-consistent
reversibility

What is reversibility?

The possibility of executing a computation both in the
standard, forward direction, and in the backward

direction, going back to a past state

 What does it mean to go backward?
 If from state S1 we go forward to state S2, then from state

S2 we should be able to go back to state S1

Reversibility everywhere

 Reversibility widespread in the world
– Undo button in editors
– Backup, svn
– Chemistry/biology
– Quantum phenomena
– Optimistic simulation

– ...

Why reversibility for concurrent systems?

 Modelling concurrent systems
– Suitable for systems which are naturally reversible
– Biological, chemical, ...

 Programming concurrent systems
– State space exploration, such as in Prolog
– Define reversible functions
– Build reliable systems

 Debugging concurrent systems
– Avoid the “Gosh, I should have put the breakpoint at an

earlier line” problem

Reversibility for reliability: the idea

 To make a system reliable we want to avoid “bad”
states

 If a bad state is reached, reversibility allows one to go
back to some past state
– Similar to what is done in many approaches, such as

transactions and checkpointing

 Far enough, so that the decisions leading to the bad
state has not been taken yet

 When we restart computing forward, we should try
new directions

What is the status of approaches to reliability?

 A lot of approaches
 A bag of tricks to face different problems
 No clue on whether and how the different tricks

compose
 No unifying theory for them

 Understanding reversibility is the key to
– Understand existing patterns for programming reliable

systems
– Combine and improve them
– Develop new patterns

Reverse execution of a sequential program

 Recursively undo the last step
– Computations are undone in reverse order
– To reverse A;B reverse first B, then reverse A

 First we need to undo single computation steps
 We want the Loop Lemma to hold

– From state S, doing A and then undoing A should lead back
to S

– From state S, undoing A (if A is in the past) and then redoing
A should lead back to S

– [Danos, Krivine: Reversible Communicating Systems.
CONCUR 2004]

Undoing computational steps

 Computation steps may cause loss of information
 X=5 causes the loss of the past value of X
 X=X+Y causes no loss of information

– Old value of X can be retrieved by doing X=X-Y

Different approaches to reversibility

 Saving a past state and redoing the same computation
from there (checkpoint & replay)

 Undoing steps one by one
– Restricting the language to commands which are naturally

reversible
» Cause no loss of information

– Keeping the whole language (non reversible) and make it
reversible

» One should save information on the past configurations
» X=5 becomes reversible by recording the old value of X

Reversibility and concurrency

 In a sequential setting, recursively undo the last step
 Which is the last step in a concurrent setting?
 Many possibilities
 For sure, if an action A caused an action B, A could not

be the last one
 Causal-consistent reversibility: recursively undo any

action whose consequences (if any) have already been
undone

 Proposed in [Danos, Krivine: Reversible
Communicating Systems. CONCUR 2004]

Causal-consistent reversibility

a

a

b

b

Causal-consistent reversibility: advantages

 No need to understand timing of actions
– Difficult since a unique notion of time may not exist

 Only causality has to be analyzed
– Easier since causality has a local effect

Causal history information

 Remembering history information is not enough
 We need to remember also causality information
 Actions performed by the same thread are totally

ordered by causality
 Actions in different threads may be related if the

threads interact
 If thread T1 sent a message to thread T2 then

– T2 depends on T1

– T1 cannot reverse the send before T2 reverses the receive

 We need to remember information on communication
between threads

Causal equivalence

 According to causal-consistent reversibility
– Changing the order of execution of concurrent actions

should not make a difference
– Doing an action and then undoing it (or undoing and

redoing) should not make a difference (Loop Lemma)

 Two computations are causal equivalent if they are
equal up to the transformations above

Causal consistency theorem

 Two computations from the same state should lead to
the same state iff they are causal equivalent

 Causal equivalent computations
– Produce the same history information
– Can be undone in the same ways

 Computations which are not causal equivalent
– Should not lead to the same state
– Otherwise one would wrongly reverse them in the same way
– If in a non reversible setting they would lead to the same

state, we should add history information to differentiate the
states

Example

 If x>5 then y=2 else y=7 endif;y=0
 Two possible computations, leading to the same state
 From the causal consistency theorem we know that we

need history information to distinguish them
– At least we should trace the chosen branch

 The amount of information to be stored in the worst
case is linear in the number of steps
[Lienhardt, Lanese, Mezzina, Stefani: A Reversible
Abstract Machine and Its Space Overhead.
FMOODS/FORTE 2012]

Many reversible calculi

 Causal-consistent reversible extensions of many
calculi have been defined and studied
– CCS: Danos & Krivine [CONCUR 2004]
– CCS-like calculi: Phillips & Ulidowski [FoSSaCS 2006,

JLAP 2007]
– HOπ: Lanese, Mezzina & Stefani [CONCUR 2010]
– μOz: Lienhardt, Lanese, Mezzina & Stefani

[FMOODS&FORTE 2012]
– π-calculus: Cristescu, Krivine, Varacca [LICS 2013]
– Klaim: Giachino, Lanese, Mezzina, Tiezzi [PDP 2015]

 All applying the ideas we discussed
 With different technical solutions

Example

 In CCS:
a.P+Q | a.P

1
+Q

1
→ P | P

1

 In (a) reversible CCS
k:a.P+Q | k

1
:a.P

1
+Q

1
↔

νk
1
,k

2
 [a, k:Q, k

1
:Q

1
, k

2
, k

3
] | k

2
:P | k

3
:P

1

This is just uncontrolled reversibility

 The works above describe how to go back and
forward, but not when to go back and when to go
forward

 Non-deterministic is not enough
– The program may go back and forward between the same

states forever
– If a good state is reached, the program may go back and lose

the computed result

 We need some form of control for reversibility
– Different possible ways to do it
– Which one is better depends on the intended application
– We show one approach as example

23

Controlling reversibility

Do you remember our aim?

 Our application field: programming reliable
concurrent/distributed systems

 Normal computation should go forward
– No backward computation without errors

 In case of error we should go back to a past state
– We assume to be able to detect errors

 We should go to a state where the decision leading to
the error has not been taken yet

– The programmer should be able to find such a state

Roll operator

 Normal execution is forward
 Backward computations are explicitly required using a

dedicated command
 Roll γ, where γ is a reference to a past action

– Undoes action pointed by γ, and all its consequences
– Undo the last n steps not meaningful in a concurrent setting

 γ is a form of checkpoint
 This allows one to make a computed result permanent

– If there is no roll pointing back past a given action, then the
action is never undone

The kind of algorithms we want to write

 γ: take some choice
....
if we reached a bad state

roll γ
else
 output the result

 The roll operator is suitable for our aims
 Not necessarily the best in all the cases
 Most programs are divergent

Reversible debugger

 The user controls the direction of execution
via the debugger commands

 In standard debuggers: step, run, ...

 A reversible debugger also provides commands such as
“step back”

 Reversible debuggers for sequential programs exist
(e.g, gdb, UndoDB)

Causal-consistent reversible debugger

 We exploit the causal information to help debugging
concurrent applications

 We provide a debugger command like the roll
 Undo a given past action and all its consequences
 Different possible interfaces for roll

– The last assignment to a given variable
– The last send to a given channel
– The last read from a given channel
– The creation of a given thread

 http://www.cs.unibo.it/caredeb/index.html

Roll and loop

 Let us go back to roll as a programming
construct

 With the roll approach
 We reach a bad state
 We go back to a past state
 We may choose again the same path
 We reach the same bad state again
 We go back again to the same past state
 We may choose again the same path
 …

Permanent and transient errors

 Going back to a past state forces us to forget
everything we learned in the forward computation

– We may retry again and again the same path

 The approach is fine for transient errors
– Errors that may disappear by retrying
– E.g., message loss on the Internet

 The approach is less suited for permanent errors
– Errors that occur every time a state is reached
– E.g., division by zero, null pointer exception
– We can only hope to take a different branch in a choice

We should break the Loop Lemma

 In case of error we want to change path
– Not possible with the roll alone
– The programmer cannot avoid to take the same path again

and again

 We need to remember something from the past try
– Not allowed by the Loop Lemma

32

Specifying alternatives

Alternatives

 The programmer may declare different ordered
alternatives to solve a problem

 The first time the first alternative is chosen
 Undoing the choice causes the selection of the next

alternative
– Like in Prolog
– We rely on the programmer for a good definition and

ordering of alternatives

Specifying alternatives

 Actions A%B
 Normally, A%B behaves like A
 If A%B is the target of a roll, it becomes B
 Intuitive meaning: try A, then try B
 B may have alternatives too

Programming with alternatives

 We should find the actions that may lead to bad states
 We should replace them with actions with alternatives
 We need to find suitable alternatives

– Retry
– Retry with different resources
– Give up and notify the user
– Trace the outcome to drive future choices

Example

 Try to book a flight to Frankfurt with Lufthansa
 A Lufthansa website error makes the booking fail

– Retry: try again to book with Lufthansa
– Retry with different resources: try to book with Alitalia
– Give up and notify the user: no possible booking, sorry
– Trace the outcome to drive future choices: remember that

Lufthansa web site is prone to failure, next time try a
different company first

Application: Communicating transactions

 [de Vries, Koutavas, Hennessy: Communicating
Transactions. CONCUR 2010]

 Transactions that may communicate with the
environment and with other transactions while
computing

 In case of abort one has to undo all the effects on the
environment and on other transactions

– To ensure atomicity

Communicating transactions via reversibility

 We can encode communicating transactions
– We label the start of the transaction with γ
– An abort is a roll γ
– The roll γ undoes all the effects of the transaction
– A commit simply disables the roll γ

 The mapping is simple, the resulting code quite
complex

– We also need all the technical machinery for reversibility

 The encoding is more precise than the original
semantics

– We avoid some useless undo
– Since our treatment of causality is more refined

39

Conclusion

Summary

 Uncontrolled reversibility for concurrent systems
 A sample mechanism for controlling reversibility
 How to avoid looping using alternatives

Future work

 Can we make mainstram concurrent languages
reversible?
– Concurrent ML, Erlang, Java, ...
– How to deal with data structures, modularity, type systems, …
– First step: arbitrary sequential language + simple concurrency

model

 Can we find some killer applications?
– Software transactional memories
– Existing algorithms for distributed checkpointing
– Debugging

Finally

Thanks!

Questions?

	Slide 1
	Contributors
	Map of the talk
	Slide 4
	What is reversibility for us?
	Reversibility everywhere
	Why reversibility for concurrent systems?
	Reversibility for reliability: the idea
	What is the status of approaches to reliability?
	Reverse execution of a sequential program
	Undoing computational steps
	Different approaches to reversibility
	Reversibility and concurrency
	Causal-consistent reversibility
	Causal-consistent reversibility: advantages
	Causal history information
	Causal equivalence
	Causal consistency theorem
	Example
	Many reversible calculi
	Slide 21
	This is just uncontrolled reversibility
	Slide 23
	Back to our roll
	Roll operator
	The kind of algorithm we want to write
	Reversible debugger
	Causal-consistent reversible debugger
	Roll and loop
	Permanent and transient errors
	We should break the Loop Lemma
	Slide 32
	Alternatives
	Specifying alternatives
	Programming with alternatives
	Example
	Application: Communicating transactions
	Communicating transactions via reversibility
	Slide 39
	Summary
	Future work: language
	Finally

