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Causal-consistent 
reversibility



What is reversibility?

The possibility of executing a computation both in the 
standard, forward direction, and in the backward 

direction, going back to a past state

 What does it mean to go backward?
 If from state S1 we go forward to state S2, then from state 

S2 we should be able to go back to state S1



Reversibility everywhere

 Reversibility widespread in the world
– Undo button in editors
– Backup, svn
– Chemistry/biology
– Quantum phenomena
– Optimistic simulation

– ... 



Why reversibility for concurrent systems?

 Modelling concurrent systems
– Suitable for systems which are naturally reversible
– Biological, chemical, ...

 Programming concurrent systems
– State space exploration, such as in Prolog
– Define reversible functions
– Build reliable systems

 Debugging concurrent systems
– Avoid the “Gosh, I should have put the breakpoint at an 

earlier line” problem



Reversibility for reliability: the idea

 To make a system reliable we want to avoid “bad” 
states

 If a bad state is reached, reversibility allows one to go 
back to some past state
– Similar to what is done in many approaches, such as 

transactions and checkpointing 

 Far enough, so that the decisions leading to the bad 
state has not been taken yet

 When we restart computing forward, we should try 
new directions



What is the status of approaches to reliability?

 A lot of approaches
 A bag of tricks to face different problems
 No clue on whether and how the different tricks 

compose
 No unifying theory for them

 Understanding reversibility is the key to
– Understand existing patterns for programming reliable 

systems
– Combine and improve them
– Develop new patterns



Reverse execution of a sequential program

 Recursively undo the last step
– Computations are undone in reverse order
– To reverse A;B reverse first B, then reverse A

 First we need to undo single computation steps
 We want the Loop Lemma to hold

– From state S, doing A and then undoing A should lead back 
to S

– From state S, undoing A (if A is in the past) and then redoing 
A should lead back to S

– [Danos, Krivine: Reversible Communicating Systems. 
CONCUR 2004]



Undoing computational steps

 Computation steps may cause loss of information
 X=5 causes the loss of the past value of X
 X=X+Y causes no loss of information

– Old value of X can be retrieved by doing X=X-Y



Different approaches to reversibility

 Saving a past state and redoing the same computation 
from there (checkpoint & replay)

 Undoing steps one by one
– Restricting the language to commands which are naturally 

reversible
» Cause no loss of information

– Keeping the whole language (non reversible) and make it 
reversible

» One should save information on the past configurations
» X=5 becomes reversible by recording the old value of X



Reversibility and concurrency

 In a sequential setting, recursively undo the last step
 Which is the last step in a concurrent setting?
 Many possibilities
 For sure, if an action A caused an action B, A could not 

be the last one
 Causal-consistent reversibility: recursively undo any 

action whose consequences (if any) have already been 
undone

 Proposed in [Danos, Krivine: Reversible 
Communicating Systems. CONCUR 2004]



Causal-consistent reversibility
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Causal-consistent reversibility: advantages

 No need to understand timing of actions
– Difficult since a unique notion of time may not exist

 Only causality has to be analyzed
– Easier since causality has a local effect 



Causal history information

 Remembering history information is not enough
 We need to remember also causality information
 Actions performed by the same thread are totally 

ordered by causality
 Actions in different threads may be related if the 

threads interact
 If thread T1 sent a message to thread T2 then 

– T2 depends on T1 

– T1 cannot reverse the send before T2 reverses the receive

 We need to remember information on communication 
between threads



Causal equivalence

 According to causal-consistent reversibility
– Changing the order of execution of concurrent actions 

should not make a difference
– Doing an action and then undoing it (or undoing and 

redoing) should not make a difference (Loop Lemma)

 Two computations are causal equivalent if they are 
equal up to the transformations above



Causal consistency theorem

 Two computations from the same state should lead to 
the same state iff they are causal equivalent

 Causal equivalent computations 
– Produce the same history information
– Can be undone in the same ways

 Computations which are not causal equivalent
– Should not lead to the same state
– Otherwise one would wrongly reverse them in the same way
– If in a non reversible setting they would lead to the same 

state, we should add history information to differentiate the 
states



Example

 If x>5 then y=2 else y=7 endif;y=0
 Two possible computations, leading to the same state
 From the causal consistency theorem we know that we 

need history information to distinguish them
– At least we should trace the chosen branch

 The amount of information to be stored in the worst 
case is linear in the number of steps 
[Lienhardt, Lanese, Mezzina, Stefani: A Reversible 
Abstract Machine and Its Space Overhead. 
FMOODS/FORTE 2012]



Many reversible calculi

 Causal-consistent reversible extensions of many 
calculi have been defined and studied
– CCS: Danos & Krivine [CONCUR 2004]
– CCS-like calculi: Phillips & Ulidowski [FoSSaCS 2006, 

JLAP 2007]
– HOπ: Lanese, Mezzina & Stefani [CONCUR 2010]
– μOz: Lienhardt, Lanese, Mezzina & Stefani 

[FMOODS&FORTE 2012]
– π-calculus: Cristescu, Krivine, Varacca [LICS 2013]
– Klaim: Giachino, Lanese, Mezzina, Tiezzi [PDP 2015]

 All applying the ideas we discussed
 With different technical solutions
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This is just uncontrolled reversibility

 The works above describe how to go back and 
forward, but not when to go back and when to go 
forward

 Non-deterministic is not enough
– The program may go back and forward between the same 

states forever
– If a good state is reached, the program may go back and lose 

the computed result

 We need some form of control for reversibility
– Different possible ways to do it
– Which one is better depends on the intended application
– We show one approach as example
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Controlling reversibility



Do you remember our aim?

 Our application field: programming reliable 
concurrent/distributed systems

 Normal computation should go forward
– No backward computation without errors

 In case of error we should go back to a past state
– We assume to be able to detect errors

 We should go to a state where the decision leading to 
the error has not been taken yet

– The programmer should be able to find such a state



Roll operator

 Normal execution is forward
 Backward computations are explicitly required using a 

dedicated command
 Roll γ, where γ is a reference to a past action

– Undoes action pointed by γ, and all its consequences
– Undo the last n steps not meaningful in a concurrent setting 

 γ is a form of checkpoint 
 This allows one to make a computed result permanent

– If there is no roll pointing back past a given action, then the 
action is never undone



The kind of algorithms we want to write

 γ: take some choice
....
if we reached a bad state

roll γ
else
    output the result

 The roll operator is suitable for our aims
 Not necessarily the best in all the cases
 Most programs are divergent



Reversible debugger

 The user controls the direction of execution
via the debugger commands

 In standard debuggers: step, run, ...

 A reversible debugger also provides commands such as 
“step back”

 Reversible debuggers for sequential programs exist 
(e.g, gdb, UndoDB)



Causal-consistent reversible debugger

 We exploit the causal information to help debugging 
concurrent applications

 We provide a debugger command like the roll
 Undo a given past action and all its consequences
 Different possible interfaces for roll

– The last assignment to a given variable
– The last send to a given channel
– The last read from a given channel
– The creation of a given thread

 http://www.cs.unibo.it/caredeb/index.html



Roll and loop

 Let us go back to roll as a programming 
construct

 With the roll approach
 We reach a bad state
 We go back to a past state
 We may choose again the same path
 We reach the same bad state again
 We go back again to the same past state
 We may choose again the same path
 …



Permanent and transient errors

 Going back to a past state forces us to forget 
everything we learned in the forward computation

– We may retry again and again the same path

 The approach is fine for transient errors
– Errors that may disappear by retrying
– E.g., message loss on the Internet

 The approach is less suited for permanent errors
– Errors that occur every time a state is reached
– E.g., division by zero, null pointer exception
– We can only hope to take a different branch in a choice



We should break the Loop Lemma

 In case of error we want to change path
– Not possible with the roll alone
– The programmer cannot avoid to take the same path again 

and again

 We need to remember something from the past try
– Not allowed by the Loop Lemma
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Specifying alternatives



Alternatives

 The programmer may declare different ordered 
alternatives to solve a problem

 The first time the first alternative is chosen
 Undoing the choice causes the selection of the next 

alternative
– Like in Prolog
– We rely on the programmer for a good definition and 

ordering of alternatives



Specifying alternatives

 Actions A%B
 Normally, A%B behaves like A
 If A%B is the target of a roll, it becomes B
 Intuitive meaning: try A, then try B
 B may have alternatives too



Programming with alternatives

 We should find the actions that may lead to bad states
 We should replace them with actions with alternatives
 We need to find suitable alternatives

– Retry
– Retry with different resources
– Give up and notify the user
– Trace the outcome to drive future choices



Example

 Try to book a flight to Frankfurt with Lufthansa
 A Lufthansa website error makes the booking fail

– Retry: try again to book with Lufthansa
– Retry with different resources: try to book with Alitalia
– Give up and notify the user: no possible booking, sorry
– Trace the outcome to drive future choices: remember that 

Lufthansa web site is prone to failure, next time try a 
different company first



Application: Communicating transactions

 [de Vries, Koutavas, Hennessy: Communicating 
Transactions. CONCUR 2010]

 Transactions that may communicate with the 
environment and with other transactions while 
computing

 In case of abort one has to undo all the effects on the 
environment and on other transactions

– To ensure atomicity



Communicating transactions via reversibility

 We can encode communicating transactions
– We label the start of the transaction with γ
– An abort is a roll γ
– The roll γ undoes all the effects of the transaction
– A commit simply disables the roll γ

 The mapping is simple, the resulting code quite 
complex

– We also need all the technical machinery for reversibility

 The encoding is more precise than the original 
semantics

– We avoid some useless undo
– Since our treatment of causality is more refined
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Conclusion



Summary

 Uncontrolled reversibility for concurrent systems
 A sample mechanism for controlling reversibility
 How to avoid looping using alternatives



Future work

 Can we make mainstram concurrent languages
reversible?
– Concurrent ML, Erlang, Java, ...
– How to deal with data structures, modularity, type systems, …
– First step: arbitrary sequential language + simple concurrency 

model 

 Can we find some killer applications?
– Software transactional memories
– Existing algorithms for distributed checkpointing
– Debugging



Finally

Thanks!

Questions?
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